
1

ELEC 3300 – Tutorial for LAB4

Department of Electronic and Computer Engineering
HKUST
by WU Chi Hang

2

Clock in STM32

� In LAB2, you already understand that there is a clock that governs the
speed of the STM32.

� The running clock of the STM32 is called the System Clock (SYSCLK).

� The SYSCLK is the global clock that will be further distributed to the
AHB and APB to be the clock of rest of the STM32.

� Recall the clock tree diagram.

3

AHB APB
� SYSCLK is the System Clock

Frequency (max 72 MHz)

� AHB is the System Bus
� APB is Peripherals Bus

� The two AHB/APB bridges
provide full synchronous
connections between the AHB
and the 2 APB buses.

� APB1 is limited to 36 MHz
� APB2 can operates at full speed

(i.e. max 72 MHz)

4

Clock in STM32

� Actually, the SYSCLK clock is originated from
� HSI = High Speed Internal clock signal.
� HSE = High Speed External clock signal.
� PLLCLK = Phase Locked Loop CLK signal.

� You can see the SYSCLK is 72MHz max.

5

Clock in STM32

� In the MINI-V3 Development board, PLLCLK is selected the as the input
to the SYSCLK because it is programmable, and it is originated from the
8MHz crystal clock on the board.

8MHz Crystal

32768Hz Crystal

6

Clock in STM32

� As shown in the schematic

7

MCO (Master Clock Output)

� In STM32, there is a pin called Master Clock Output (MCO) that allows
you to output the clock to view it in the oscilloscope.

� The MCO pin is mapped to PA.8 of the STM32.

� Click RCC, enable the High Speed Clock and Low Speed Clock to
� Crystal/Creamic Resonator

8

Change Clock to Crystal

9

MCO (Master Clock Output)

� In order to enable the clock, you need to enable the function in CubeMX
� On RCC Page, when you enable the Clock

� Once you enabled it, you will see the actual pin is PA.8, modify the
speed to High, so that you can output a faster clock

10

MCO (Master Clock Output)

11

MCO (Master Clock Output)

� On Clock Configuration Page, you will see the bottom part is enabled
maxfrequency outputbyfin is bout

each io pin Maxoutput
red no good 50mHz

t
isenabled is a Mco

12

MCO (Master Clock Output)

� Close up to the
required part

Choose SYSCLK

The pin will output
the SYSTEM clock
Speed, you can
see they are the
same

Red here because the
I/O pin (PA.8) CANNOT
output that speed

Question : What is the Maximum Speed
that can be output for the I/O pin ?

13

MCO (Master Clock Output)

Change the PLLMul,
and HSE divisor such
that it uses a lower
speed SYSCLK

The pin will output
the SYSTEM clock
Speed, you can
see they are the
sameYou can try any combinations.

In this example, the SYSCLK
is 8MHz x 2 = 16MHz, which
can be output to PA.8

� Go to Pinout & Configuration, in SYS, Choose Serial Wire for Debug

14

Communicate with Debugger

15

LAB4 – Task 1

� Task 1 requires you to output the SYSCLK via the MCO pin and display
the SYSCLK on the CRO.
1. Refer to CubeMX Tutorial, create a simple Project that allows you to output

the SYSLCK.
2. Follow the steps before, change the HSE divisor PLLMul, such that you can

set the SYSCLK to 8MHz.
3. The reason for setting to 8MHz is because our DMM can only measure

frequency less than 10MHz.
4. Connect the Red Terminal of your DMM to the PA.8. Try to locate where is

PA.8 by going through the MINI.pdf
5. Run your program, you will be able to see a 8MHz signal on the DMM.

DMM CRO inlab

Dmm cannotmeasurefreq higherthan
10MHz

16

LAB4 – Task 1 Hint

� For changing the HSE divisor or PLLMul, you can either generate the
code again or try to modify the code generated

� In main.c
void SystemClock_Config(void)

RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV2;

RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;

� You can change the code there instead of re-generating the code.

17

LAB4 – Task 1 Hint

� Jumper Location 3
Default as shown

� Left <J18-J19> PA1 <-----> Cap T_KEY
� Right <J20-J21> PA8 <-----> Buzzer

� By default connects PA1 to Cap T_KEY, if PA1 has other use, the
jumper needs to be removed.

� By default connects PA8 to Buzzer, if PA8 has other use, the jumper
needs to be removed.

� Right <J20-J21> PA8 <-----> Buzzer
By default connects PA8 to Buzzer, if PA8 has other use, the jumper needs
to be removed
� Question : After you removed the Jumper, there are 2 points
� Which point connects to PA.8 ? Which point connects to Buzzer ?

18

LAB4 – Task 1 Hint

19

Task 1 – Viewing the output

19

Connect to PA.8

DO NOT HOOK DIRECTLY
TO THE BOARD
USE the CONNECTION WIRES
PROVIDED to lead out PA.8 PIN

Set to
Hz/Duty

Display
Hz for masuring Freq
% for measuring Duty Cycle

Switch
between Hz / %

20

Timers in STM32

� The high-density STM32F103xx performance line devices include up to
two advanced control timers, up to four general-purpose timers, two
basic timers, two watchdog timers and a SysTick timer.
� TIM1 / TIM8 – advanced control timers
� TIM2 / TIM3 / TIM4 / TIM5 – general purpose timers
� TIM6 / TIM7 – basic timers

TIMER'M 41
Drowensupplyva

Trigger E F Discharge
Threshold

Reset E D
control
Voltage

21

Timers in STM32

� TIM1 / TIM8 – advanced control timers
� TIM2 / TIM3 / TIM4 / TIM5 – general purpose timers
� TIM6 / TIM7 – basic timers

inhardware correspondingt y

advanced

48
5554me

LAB4
Inter

basic

pj Q D 72mHz ooo I
O 15

22

Advanced Timers (TIM1 / TIM8)

� The two advanced-control timers (TIM1 and TIM8) can each be seen as
a three-phase PWM multiplexed on 6 channels. They have
complementary PWM outputs with programmable inserted dead-times.
They can also be seen as a complete general-purpose timer. The 4
independent channels can be used for:
� Input capture
� Output compare
� PWM generation (edge or center-aligned modes)
� One-pulse mode output

� If configured as a standard 16-bit timer, it has the same features as the
TIMx timer. If configured as the 16-bit PWM generator, it has full
modulation capability (0-100%).

o 15 oooo

total
duration

Yama

23

General-purpose Timers (TIMx)

� There are up to 4 synchronizable general-purpose timers (TIM2, TIM3,
TIM4 and TIM5) embedded in the STM32F103xC, STM32F103xD and
STM32F103xE performance line devices.

� These timers are based on a 16-bit auto-reload up/down counter, a 16-
bit prescaler and feature 4 independent channels each for input
capture/output compare, PWM or onepulse mode output.

� The general-purpose timers can work together with the advanced-control
timer via the Timer Link feature for synchronization or event chaining.
Their counter can be frozen in debug mode.

� Any of the general-purpose timers can be used to generate PWM
outputs. They all have independent DMA request generation.

� These timers are capable of handling quadrature (incremental) encoder
signals and the digital outputs from 1 to 3 hall-effect sensors.T

Onetimer output controlanother
I

24

Basic Timers (TIM6 / TIM7)

� These timers are mainly used for DAC trigger generation.
� They can also be used as a generic 16-bit time base.

finer

countup

25

Block Diagram of Timers

Note :
• TIM2 to TIM7 via APB1
• TIM1/8 via APB2

1Mt

maxT
O 36Mt

max

72HE

26

Block Diagram of Timers
72MHz

36MHz

72MHz

What is the value of
the APB1 Prescaler ?

What is the value of
the APB2 Prescaler ?

What is speed
of TIMXCLK ?

What is speed
of TIMXCLK ?

O
729mHz

O
72MHz

Summary All8 timers can run 72MHz

27

Block Diagram of Timers
Max 72MHz trigger

28

Functional Description of Timer

� The counter, the auto-reload register and the prescaler register can be
written or read by software. This is true even when the counter is
running.

� The time-base unit includes:
� Counter Register (TIMx_CNT)
� Prescaler Register (TIMx_PSC)
� Auto-Reload Register (TIMx_ARR)

� The counter is clocked by the prescaler output CK_CNT, which is
enabled only when the counter enable bit (CEN) in TIMx_CR1 register is
set.

29

Functional Description of Timer

Clk before Prescaler

Counter Enable

Value in register
increments when each
clock comes in

When prescaler = 0, what is
the relation of CK_PSC and
CK_CNT ?

When prescaler = 1, what is
the relation of CK_PSC and
CK_CNT ?

39g

30

Autoreload

� In upcounting mode, the counter counts from 0 to the auto-reload value
(content of the TIMx_ARR register), then restarts from 0 and generates a
counter overflow event.

� The following figures show some examples of the counter behavior for
different clock frequencies when TIMx_ARR=0x36.

Note : Start with 0, end at
0x36. What is the relation
between CK_INT and
Counter overflow ?

Generatefrequency
load no intoARR register

Rettig InputUK ARRA

31

PWM Output using TIMx

� Pulse width modulation mode allows you to generate a signal with a
frequency determined by the value of the TIMx_ARR register and a duty
cycle determined by the value of the TIMx_CCRx register.

� The following shows and Edge-aligned PWM waveforms (ARR=8)lmlft
8MHz

727ft 8MHz
8

8mHz

Duty cycle is different

32

Generating PWM in STM32

� You can use CubeMX to Initialize the PWM
� Let’s use TIM2 as an example

33

Period = 63

Pulse = 16

TIM2

Using Internal Clock
as Clock Source to
generate the
PWM in Channel 1

ARR

CR

34

Setup the Period (Frequency)

� You can check the code, initializations for the Period is shown
void MX_TIM2_Init(void)

htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 63;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{

Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{

Error_Handler();
}

35

Setup the Period (Frequency)

� From the above setting
� If CK_CNT = 72MHz, what is the frequency of Counter overflow ?

CK_CNT

Counter Register

Counter overflow

0 1 26362 0 1 26362 0 1 26362

free
of 4

72mHz

02304005600780
confetti

36

Setup the Pulse (Duty Cycle)

� You can check the code, initializations for the Pulse is shown
void MX_TIM2_Init(void)

if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{

Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();

}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 16;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{

Error_Handler();
}

37

Setup the Pulse (Duty Cycle)

� The Pulse argument is the number of High count.

� What is the duty cycle of OCxREF ?

16 17 181514 0 1 26362 16 17 181514

CK_CNT

Counter Register

OCxREF

Duty 44

you

38

Enable the PWM

� You configured the Timer in CubeMX, if you want the Timer to run, you
need to add a code on

HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1);

39

Task 2 – Generating a PWM

� You need to output a PWM using TIM3
� The specification of PWM is as follows :

Assuming your student ID digits are abcdefgh
� Frequency = z00kHz z = (gh mod 9) + 1
� Duty Cycle = y0% y = (fg mod 7) + 2

� Example, if your student ID is 20567831
� z = (31 mod 9) + 1 = 5 Æ Frequency = 500kHz
� y = (83 mod 7) + 2 = 8 Æ Duty Cycle = 80%

206540910 91

91m19 1 2 200kt09 mod 7 2 4 40

40

Task 2 – Generating a PWM

� You need to take the following note for finishing Task 2.
1. Please make sure that SYSCLK is 72MHz
2. The output will be in PA.6 for TIM3_CH1

3. Enable PWM for TIM3

41

Task 2 – Viewing the output

You need to connect PA.6 to the DMM, locate the PA.6 from the right
side of the board

Make SURE you use the Connection
Wires provided to lead out the pin
then connect to the DMM Probe.

DO NOT connect the DMM directly to
the board as it might short circuit to
other pin and hence damage the
board.

42

Task 2 – Viewing the output

42

Connect to PA.6
DO NOT CONNECT DMM Cable
DIRECTLY TO THE BOARD
USE the CONNECTION WIRES
PROVIDED to lead out PA.6 PIN

Set to
Hz/Duty

Display
Hz for masuring Freq
% for measuring Duty Cycle

Switch
between Hz / %

43

Timer synchronization

� The TIMx timers are linked together internally for timer synchronization
or chaining. When one Timer is configured in Master Mode, it can reset,
start, stop or clock the counter of another Timer configured in Slave
Mode.

Ypg
trigger

get input from
master

44

Timer synchronization

� From the example above, TIM1 is used to trigger TIM2
� To do this, you need to

1. Configure Timer 1 in master mode so that it outputs a periodic trigger signal on each
update event UEV. A rising edge is output on TRGO1 each time an update event is
generated.

2. To connect the TRGO1 output of Timer 1 to Timer 2, Timer 2 must be configured in
slave mode using ITR0 as internal trigger. You select this through the TS bits in the
TIM2_SMCR register (writing TS=000).

3. Then you put the slave mode controller in external clock mode 1 (write SMS=111 in the
TIM2_SMCR register). This causes Timer 2 to be clocked by the rising edge of the
periodic Timer 1 trigger signal (which correspond to the timer 1 counter overflow).

4. Finally both timers must be enabled by setting their respective CEN bits (TIMx_CR1
register).

� Below shows the case when TIM1_ARR = 31, TIM2_ARR = 7

� If CK_CNT = 72MHz
� What is the frequency of TIM1 Counter overflow ?
� What is the frequency of TIM2 Counter overflow ?

45

Timer synchronization

CK_CNT

3130

TIM2
Counter Register 0

0 31

1

0 31
TIM1

Counter Register

TIM1
Counter Overflow

7

0 31

0

0 31

TIM2
Counter Overflow

input

7 2 25mHz

MF o 28125Mt

46

Task 3 – Generating a PWM

� You need to output a PWM using TIM4 using TIM3
as an input

� The specification of PWM is as follows :
� Assuming your student ID digits are abcdefgh

� Frequency = wkHz w = (de mod 9) + 1
� Duty Cycle = x0% x = (cd mod 7) + 2

� Example, if your student ID is 20567831
� w = (67 mod 9) + 1 = 5 Æ Frequency = 5kHz
� x = (56 mod 7) + 2 = 2 Æ Duty Cycle = 20%

2 065 4091

54 9 1
65 7 4

47

Task 3 – For TIM3

Enable the Master
Mode
Trigger Event to Update

I KHZ

40

HEY

48

Task 3 – For TIM4

Set suitable Period
and Pulse for your
Student ID

Slave Mode : Gated Mode
Trigger Source : Refer to Page 49
Clock Source : Disabled
Channel 1 : PWM G. CH1

Y

� Please note that the CubeMX may use PD.12 as TIM4_CH1. If it is the
case, please choose PB.6 to be the TIM4_CH1.

49

Task 3 – For TIM4

DO NOT Use PD.12

Use PB.6 St PB 6

time4 Chi

50

Task 3 – Generating a PWM

� You need to take the following note for finishing Task 3.
1. Please make sure that SYSCLK is 72MHz
2. The output will be in PB.6 for TIM4_CH1

3. Enable PWM for TIM4

51

TIMx Internal trigger connection

� The internal trigger connection by different timers is specified in the in
the TIMx_SMCR Register (Bit 6:4) TS: Trigger selection

� So, in Task 3, Master is TIM3, Slave is TIM4, you need to enable which
ITRx as the internal trigger ?

ITR2 75 010

52

Task 3 – Viewing the output

52

Connect to PB.6
DO NOT CONNECT DMM Cable
DIRECTLY TO THE BOARD
USE the CONNECTION WIRES
PROVIDED to lead out PB.6 PIN

Set to
Hz/Duty

Display
Hz for masuring Freq
% for measuring Duty Cycle

Switch
between Hz / %

53

Task 4 – Change Optimization

� Your C++ Optimization should by default set to Level 3 (-O3) when
generated by CubeMX.

� Try to change your Optimization to Level 0 (-O0).

� Compile your program check the frequency by using DMM.

� Answer the TA if the frequency changed

� One use of the PWM is to control a Servo Motor.
� A servomotor is a rotary actuator or linear actuator that allows for precise

control of angular or linear position, velocity and acceleration. [Wiki]

54

Servo Motor

� In this LAB, we will use a SG90 Servo motor.
� 1.5 ms pulse will set the motor in middle,
� ~2 ms pulse will set the motor 45 degrees to the right
� ~1 ms pulse will set the motor 45 degrees to the left

55

Servo Motor

How big
the

angle

56

Task 5 – Control a Servo Motor

� Connect the Signal pin (ORANGE) of the Servo to the PB.6

ORANGE Connect to PB.6

DO NOT CONNECT the Servo
DIRECTLY TO THE BOARD
USE the CONNECTION WIRES
PROVIDED to lead out GND PIN

RED Connect to 5V

BROWN Connect to GND

57

Task 5 – Control a Servo Motor

� Combining with your knowledge of LAB2, write a
program to perform the following task.

At start, servo will stay at the middle
If K1 is pressed, servo turns to one side by 30 degrees from the middle,

when K1 is released it will stay at that position
If K2 is pressed, servo turns to the opposite side by 30 degrees from the middle

when K2 is released it will stay at that position
If both K1 AND K2 are pressed together, servo will stay at the middle.

when both K1 and K2 are released it will still stay at middle

58

Task 5 – Hint

� Per your previous tasks, you might use CubeMX to generate
your PWM code, once PWM changed, you might think to
regenerate the code again.

� However, like Task 5, you need to alter the PWM Pulse
(Duty Cycle) dynamically. You can refer to the following link
to see how we can write our own function to achieve that.

� You can also think how you can alter the PWM Period
(Frequency) by referring to the generated code.

https://www.waveshare.com/wiki/STM32CubeMX_Tutorial_Series:_PWM

59

END

