ELEC 3300 — Tutorial for ILAB4

Department of Electronic and Computer Engineering
HKUST
by WU Chi Hang &

Clock in STM32

In LAB2, you already understand that there is a clock that governs the
speed of the STM32.

The running clock of the STM32 is called the System Clock (SYSCLK).

The SYSCLK is the global clock that will be further distributed to the
AHB and APB to be the clock of rest of the STM32.

Recall the clock tree diagram.

FLITFCLK
>

» to Flash programming interface
A H A I-) USB USBCLK
B B Prescaler LMHZD to USB interface

n,15
12S3CLK 1o 1283
Peripheral clock
| 2820LK ' 1oen
SYSCLK is the System Clock Peripharal clock T SDIOCLK 4 spio
Frequency (max 72 MHz) Poriphoral clock
.L’_DM.,O FsmC
Peripheral clock
enable HCLK
AHB is the System Bus 72 MHz max to AHB bus, core,
. . Clock memory and DMA
APB is Peripherals Bus W E"“ to Cortex System timer
FCLK Cortex
free running clock
. SYBCLK AHB APB1
The two AHB/APB bridges PLLCIK| [72Wr?) Prescaler 99 Prescaler o APBT
. max |/M1.2.512 | |/1,2,4,8,18) pecipherals
provide full synchronous HSE Poriphofal Clock
connections between the AHB M2,3456.7,12.13.14 o TIV2.5.4.5.6.7 12,13 14
if (APB1 prescaler =1) x /2,3.4.5,6.7,12,13,
and the 2 APB buses. css olso *I-. v
. . Peripheral Clock
APB1 is limited to 36 MHz Enable
PLLXTPRE APB2
APB2 can operates at full speed t Prescaler -
. OSC_OuT| 416 MHz /1,2,4,8,16 peripherals to APB2
(i.e. max 72 MHz) Hes ooe
0SC_IN T _
[810,11 fmers 10 TIM$,8,9,10 and 11
P sl TIMXCLK
ipheral Clock
ADC Enable
0SC32_IN to RTC L 0 ADC1,20r3
- LSE OSC Prescaler 2
768 hHiz ATGOLK 2.4.6.8 ADCCLK 14 MHz max
0SC32_OUT
RTCSEL[1:0] 12 HCLK2
ol . Perione . To SDIO AHB interface
i al clock
TSR sl to Indzpendant Watchdog (WDG) oneio -
40 kHz ’ WDGCLK
Main PLLCLK Legend:
Clock Output HSE = High-speed external clock signal
Mmco HsI HSI = High-speed internal clock signal
HSE LSI = Low-speed internal clock signal
SYSCLK LSE = Low-speed external clock signal

MCO

Clock in STM32

Actually, the SYSCLK clock is originated from

o HSI = High Speed Internal clock signal.
o HSE = High Speed External clock signal.
o PLLCLK = Phase Locked Loop CLK signal.

You can see the SYSCLK is 72MHz max.

PLLCLK

HSE

CSS

AHB
Prescaler
/1,2.512

Clock in STM32

In the MINI-V3 Development board, PLLCLK is selected the as the input
to the SYSCLK because it is programmable, and it is originated from the
8MHz crystal clock on the board.

pLLlMUL
_'NL . x16 SYpLK AHB
2, X3, x4 Prescaler |

) X3, X
PLL PLLGLK) J72 51 s 2 512
HSE
Ccss

—_— PLLXTPRE
8MHz Crystal osc. OUE o jj
T > oscN HSE 0sC
30768Hz Crystal > cecun e N
\ 32763 18z /(ATCCLK

0SC32_ouT

RTCSEL[1:0]
I:\LSI BC s 10 Indepondont Watchdog (WDG)

40 kHz ‘ WOGCLK + —

Clock in STM32

As shown in the schematic

05C_IN 12
0SC_OuT EEEE 13

PC14
PC15

0SC_IN
0sC_ouT

[2p]
=
el
2_| | | | 1 T
e oo~ o o
Ri220 g MCU_GPIO_B o5
|-BH<+ |E 4 4
& =
” g [—]
5 1vpat q 9
— 52 VDD_1 Vss_1 ‘7*2
010 1" cee 55 vop_2 VS5 2 o5
B 25 o0s vesa 2L
BEA L2 - L
— Dwos vsss g ' -
- ¢ VDDA V554
] i T2 | eepe et 20 1
7 NRST [— L& st PE3 |z = D0
T T sooto 94 PB4 98 %gﬂ
9 BOOTO PAL3
3 %-BOOTI BEPBZ PaL4 [TCK
PALS DI

8 0SC32_IN
Kg 05C32_0UT

7

7B
STM32F103VET6

Oscillator

IR

0SC_IN

£34 20P
Il]
2
Tl
D SMHz
1

‘ MCO (Master Clock Output)

MCO

Main

PLLCLK
HSI

A

MCO

HSE
SYSCLK

In STM32, there is a pin called Master Clock Output (MCO) that allows
you to output the clock to view it in the oscilloscope.

Legend:
HSE = High-speed external clock signal

HSI = High-speed internal clock signal
LSI = Low-speed internal clock signal
LSE = Low-speed external clock signal

= The MCO pin is mapped to PA.8 of the STM32.

E11|E9|D1] 40|66 |99 PC9 VO|FT| PC9 TIM8_CH4/SDIO_D1 TIM3_CH4
USART1_CK/
E12| D9 | E4| 41 67 [100 PA8 VO|FT| PA8 TIM1 CH1®MCO
USART1_TX®)

~a

no

A2

AR

in1

paa

(la]

pao

‘ Change Clock to Crystal

= Click RCC, enable the High Speed Clock and Low Speed Clock to

o Crystal/Creamic Resonator
File Window Help © oy x ;7

Pinout & Configuration Clock Configuration Project Manager
Additional Software v Pinout

[STM32CubeMX Untited STM3ZF103VETC

Q ~ RCC Mode and Configuration ystem view
Czteg ies. - :
System Core w High Speed Clock (HSE) [Crystal/Ceramic Resonator v]
- Low Speed Clock (LSE) [Crystal/Ceramic Resonator]
DMA [Macter Clock Outout
GPIO
IWDG

([E——

WWDG

Analog >
Timers >

Connectiity >

Multimedia >

Computing > GPIO Settings:
Middleware > Search Signals

[Feacnorn]] Show only Modified Pins
| Pin Name [Signal on Pin GPIO mode |GPIO Pullu. User Label | Modified
na na nfa 5]

0SC_IN RCC_OSC_IN nfa

0SC_OUT RCC_OSC_.. n/a na a na o
PC14-0SC3... RCC_OSC3... n/a wa a wa o
PC15-0SC3... RCC_OSC3... n/a nla na nla a

o ol V]

2 Select Pins from table to configure them. Multiple selection is Allowed.

N S R A S Raqured Porpreas

STM32F1 STM32F103 STM32F103VEHX LFBGA100 None
©STM32F1 STM32F103 STM32F103VETx LQFP100 None

‘ MCO (Master Clock Output)

= In order to enable the clock, you need to enable the function in CubeMX
= On RCC Page, when you enable the Clock

[STM32CubeMX LAB4.ioc*: STM32F103VETx

s @ File Window Help
CubeMX

Clock Configuration Project Mana
Additional Software
RCC Mode and Configuration

System Core o High Speed Clock (HSE) lCrystaI!Ceramlc Resonator v l
N Low Speed Clock (LSE) [Cn/staI/Ceramic Resonator v l
DMA l Master Clock Output J
GPIO
IWDG
IN\Vilad
(

WWDG

Configuration

>
Analog Reset Configuration

Timers ~ @ Parameter Settings @ User Constants \ ing @ GPIO Settings

‘ MCO (Master Clock Output)

= Once you enabled it, you will see the actual pin is PA.8, modify the
speed to High, so that you can output a faster clock

RCC Mode and Configuration ;
Mode
High Speed Clock (HSE) ‘Crysta\/Ceramlc Resonator v |
Low Speed Clock (LSE) [Crystal/Ceramic Resonator]

Master Clock Output

Reset Configuration

® GPIO Ssttings

Search Signals

: [Show only Modified Pins
Signal on Pin [GPIO output | GPIO mode [GPIO Pull-up._[Maximum ou._| ~User Label | Modified
n/a n/a n/a n/a O

OSC_IN RCC_OSC_IN
0SsC_ouT RCC_OSC_... n/a n/a n/a n/a O
PA8 RCC_MCO n/a Alternate Fu... n/a High
PC14-0SC3... RCC_0SC32... n/a n/a n/a n/a [m}
PC15-0SC3... RCC_0SC32... n/a n/a n/a n/a [m}
PA8 C
GPIO mode ‘A\Iemale Function Push Pull ~ ‘
Maximum output speed ‘H\gh v ‘]
User Label ‘ ‘

‘ MCO (Master Clock Output T
MoX q(, “ L,g B Dok
et otto

abled

On Clock Configuration Page, you wiII
[STM32CubeMX LABA.ioc™: STM32F103VETx - o x
sTwa2 ”;r’ File Window Help (e n oYy k ‘Y_I
LABA.ioc - Clock Configuration GENERATE CODE

Pinout & Configuration o Clock Configuration Project Manager Tools

e e
r Qoch 10 - Mox ou{' M'
- | W Ogoé gwm_
-

11

¢ al\ablco(¢ (7] MCO

‘ MCO (Master Clock Output)

= Close up to the - w1y
required part

Enable CSS
PLL Source Mux

HSI
12 ’_> O “PLLMul
Input frequency - 8 H X9 V]

USB Prescaler

[T

PLL

4-16 MHz

The pin will output
the SYSTEM clock
Speed, you can
see they are the

Red here because the
I/O pin (PA.8) CANNOT

output that speed 5 | PHe same
- HSI
wores oo [T
SYSCLK
Question : What is the Maximum Speed Q Choose SYSCLK
that can be output for the I/0 pin ? d

12

‘ MCO (Master Clock Output)
R

HSI RC

Change the PLLMul, HSI
and HSE divisor such _ ~©O SYSCLK (MHz),
that it uses a lower — o5

speed SYSCLK \ PLcL
PLL 50)

USB Prescaler

gty s

*PLLMul
X2 v l—‘

Input frequency

4 H
The pin will output
the SYSTEM clock
Speed, you can
see they are the
You can try any combinations. 11CO source Hux came y
In this example, the SYSCLK 5 PLLCLK
is 8MHz x 2 = 16MHz, which HsI
’ 2 Ol¢—
can be output to PA.8 INCO (aq] 16| . HSE
@ SYSCLK
N

13

‘ Communicate with Debugger

= Go to Pinout & Configuration, in SYS, Choose Serial Wire for Debug

[STM32CubeMX Untitled": STM32F103VETx - 8 X
STM3: File Window Hel S n k L
CubeMX B (oy >/4
GENERATE CODE

Clock Configuration Project Manager Tools

Additional Software

SYS Mode and Configuration

va

System Core Debug|Serial Wire

DMA Timebase Source [SysTick
GPIO
woG
Nvic

SYS
WWDG
Analog

Timers

Warning: This IP has no parameters to be configured.
Multimedia > STM32F103VETX

Computing

Middieware >

Q Y

MCUs Selection | "ty
e . F - R S Regire Pergroras
STM32F1 STM32F103 STM32F103VEHx LFBGA100 None

T STy e a0 oo

LLAB4 — Task 1

Task 1 requires you to output the SYSCLK via the MCO pin and display
the SYSCLK on the GRO.)1\ (CQO m (ab

1. Refer to CubeMX Tutorial, create a simple Project that allows you to output
the SYSLCK.

2. Follow the steps before, change the HSE divisor PLLMul, such that you can
setthe SYSCLK to 8MHz. =) DM (ot WeACury, freg - bigher fhan

3. The reason for setting to 8MHz is because our DMM can only measure [0 MH%
frequency less than 10MHz. —

4. Connect the Red Terminal of your DMM to the PA.8. Try to locate where is
PA.8 by going through the MINI.pdf

5. Run your program, you will be able to see a 8MHz signal on the DMM.

15

LLAB4 —Task 1 Hint

For changing the HSE divisor or PLLMul, you can either generate the
code again or try to modify the code generated

In main.c
void SystemClock Config(void)

RCC_OscInitStruct.HSEPredivValue = RCC_HSE PREDIV DIV2Z2;
RCC OscInitStruct.PLL.PLLMUL = RCC PLL MUL9Y9;

You can change the code there instead of re-generating the code.

16

1.AB4 — Task 1 Hint

Default as shown

Jumper Location 3

Left <J18-J19> PA1 <-----> Cap T_KEY
Right <J20-J21> PA8 <-----> Buzzer

By default connects PA1 to Cap T_KEY, if PA1 has other use, the
jumper needs to be removed.

By default connects PA8 to Buzzer, if PA8 has other use, the jumper
needs to be removed.

17

LLAB4 —Task 1 Hint

Right <J20-J21> PA8 <-----> Buzzer

By default connects PA8 to Buzzer, if PA8 has other use, the jumper needs
to be removed

Question : After you removed the Jumper, there are 2 points
Which point connects to PA.8 ? Which point connects to Buzzer ? 4#

) -
i

18

‘ Task 1 — Viewing the output

Display
Hz for masuring Freq
% for measuring Duty Cycle

|,’ . AUTQ PF WER OFF .
: Switch
between Hz / %

Set to
Hz/Duty

-n

PELEb L
SDIO

"t

5 o~
gl
Y
el
-"N
-

Connect to PA.8

DO NOT HOOK DIRECTLY

TO THE BOARD

USE the CONNECTION WIRES
PROVIDED to lead out PA.8 PIN

19

Timers in STM32

= The high-density STM32F103xx performance line devices include up to
two advanced control timers, up to four general-purpose timers, two
basic timers, two watchdog timers and a SysTick timer.
o TIM1/TIM8 — advanced control timers
o TIM2/TIM3/ TIM4 / TIMS — general purpose timers
o TIM6 / TIM7 — basic timers

“N\W(’@

3] fowdi~ gﬂw/:] Uee
) fischary?
y TLVU L;U

20

‘Timers in STM32 twly hay =of™

B in_Wovdwme) covvd T’w’\"f
_ ,t‘wvbr% re (i]oro CWL
o TIM1/TIM8 — advanced control timers = ;v -
o TIM2/TIM3/ TIM4 / TIMS — general purpose timers
a TIM6 / TIM7 — basic timers
Table 4 compares the features of the advanced-control, general-purpose and basic timers.
Table 4. Timer feature comparison
Ti Counter | Counter | Prescaler | DMA request | Capture/compare | Complementary
imer - -
resolution | type factor generation channels outputs
h w Up, Any integer WA
0‘J4/a /7 Trm‘;’ 16-bit down, between 1 Yes 4 Yes X '([f ﬁMl J
up/down | and 65536
;:mg’ Up, Any integer
LA ,> ~/7 ™ 4’ 16-bit down, between 1 Yes 4 No
TIMS’ up/down | and 65536 l
Any integer //Wb
9 -.I;.Ilm(;’ 16-bit Up between 1 Yes 0 No ﬂ’.\’w‘
. 7 and 65536
‘9“ 61 (/ ;
- .)
)
W = |4 5 e 2

L_ML :)ZMHZ 000[7{

o=t 0o pv J mm
. el M
Advanced Timers (TIM1 / TIM8) ™7,
)2
z 6,\/\/\4%

The two advanced-control timers (TIM1 and TIM8) can each be seen as
a three-phase PWM multiplexed on 6 channels. They have
complementary PWM outputs with programmable inserted dead-times.
They can also be seen as a complete general-purpose timer. The 4
independent channels can be used for:

o Input capture

o Output compare

o PWM generation (edge or center-aligned modes)

o One-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the
TIMx timer. If configured as the 16-bit PWM generator, it has full
modulation capability (0-100%).

22

General-purpose Timers (T1Mx)

There are up to 4 synchronizable general-purpose timers (TIM2, TIM3,
TIM4 and TIMS) embedded in the STM32F103xC, STM32F103xD and
STM32F103xE performance line devices.

These timers are based on a 16-bit auto-reload up/down counter, a 16-
bit prescaler and feature 4 independent channels each for input
capture/output compare, PWM or onepulse mode output.

The general-purpose timers can work together with the advanced-control
timer via the Timer Link feature for synchronization or event chaining.
Their counter can rozen in debug mode.

Any of the general-purpose timers can be used to generate PWM
outputs. They all haye independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder

signals and the digital outputs from 1 to 3 hall-effect sensors.

One ey mr('(w% contro! ano/m;i/

% %d

' Basic Timers (TIMG6 / TIM?7)

= These timers are mainly used for DAC trigger generation. Cobref "‘r

= They can also be used as a generic 16-bit time base.

24

‘ Block Diagram of Timers
,\]}\)\'X

/8 | - —>

10 Cortex System timer
FCLK Cortex

HSI

PLLCLK Prescaler

n,2.512

free running clock

HSE

CSS

Note :
. TIM2 to TIM7 via APB1
. TIM1/8 viaAPB2 —

> \
AHB \X(APBT by 9 005 nax
@) o APBT _
Periphetal Clock PeriPherais 3 c H%

Prescaler
1,(2)4,8, 16
Enable (20 bits)
{TIM2,3,4,5,6,7
If (APB1 prescaler =1) x1___| \to TIM2,3,4.5.6 and 7
else x2 TIMXCLK
N_ Peripheral Clock j
Enable (6 bits)
APB2 72 MH PCLK2 \ \
| Prescaler £ max NP
n,2,4,8,16 peripherals to APB2
Peripheral Clock

Enable (15 bits) :(LZ/ H%

TIM1 & 8 timers
If (APB2 prescaler =1) x1
else x2

hl

to TIM1 and TIM8
TIMXCLK

Peripheral Clock j

Enable (2 bit)

25

‘ ' { What is the value of
Block Diagram of Tlmers3 e APs rescae

HSI

PLLCLK

HSE

Hz

CSS

What is the value of -BK
the APB2 Prescaler ?

72MHz4— /g | » A0 Cortex System timer
\ FCLK Cortex
free running clock
AHB APB1
Prescaler Ft{; Prescaler
to APB1
/1,2.512 /1@ 4,8, 16 i
Periphetal Clock peripherals
Enable (20 bits) :2 mﬂ%
{TIM2,3,4,5,6,7 t s and 7
If (APB1 prescaler =1) x1 O LIV, O0.5.0,
Peripheral Clock What is speed
Enable (6 bit
o 72MHzEnable (6 bits) of TIMXCLK ?
Prescaler PCLK2
@, 2 4.8 16 peripherals to APB2
Peripheral Clock
Enable (15 bits)
LK Ay oy anative +2PHT
- If (APB2 prescaler =1) x1
Peripheral Cloc .
| Enable (2 bit) What is speed

| PN

of TIMXCLK ?

26

fwwmwlj’v All 5’ {irw,'ﬁ (an yun @ —72 MHz .

Block

Dia%ram of Timers

Max 72

Internal

Clock (CK_INT)

i

ETRP
ER ;
TIMx_ETR [#I "%‘a%ﬁ?m""&?}*l—ﬂ Input fter |l’ TRGO
TR0 ————————————P] B >
M — P | |’ to other timers
2 TRC to DAC/ADC
M — P eset, enable, up/down, count,
THF_ED |
THFP1
Ti2FP2 —4
UH Autoreload ragister
Stop, clear or up'down
CK_PSC PSC CK CNT_’I " T
—’I P I_ counter
THFP1 (“gc I
™ ic1 4
XOR THEPT icfP
Tnput Biter & output
© [P, ‘—> 2
»
TIMx_CH1 [} TRC CccH
Vo d
IC2PS
output | _oc2
TIMx_CH2 [} conrat | 2L
CCG
1
TI3FP3 U output [OC3
TIMx_CH3 []——m} 13FP4 _’ Prescaler Captura/compare 3 register control —p
TRC—p U
1
TI4FP3 D |c4ps U 1 oca
T4 L N output
TIMx_CH& [TIAFP4 Captureicompare 4 register comral [PL
TRC
ETRF

%

TTIMx_CH1

JTIMx_CH2

TTIMx_CH3

TTIMx_CH&

27

Functional Description ot Timer

The counter, the auto-reload register and the prescaler register can be
written or read by software. This is true even when the counter is
running.

The time-base unit includes:

o Counter Register (TIMx_CNT)

o Prescaler Register (TIMx_PSC)

o Auto-Reload Register (TIMx_ARR)

The counter is clocked by the prescaler output CK_CNT, which is
enabled only when the counter enable bit (CEN) in TIMx_CR1 register is
set.

28

Functional Description ot Timer

Clk before Prescaler\ o ﬂ—ﬂ—(N ﬂ' \ {do{/\rlﬂ/lsz

Counter Enable ¢cnT En J 0()/

Timer clock = CK_CNT

Yalue in register Counter register F7
increments when each

clock comes in

Update event (UEV)

Prescaler buffer 0 K 1
s N
Prescaler counter 0 n 1 nnnma
/
When prescaler = 0, what is When prescaler = 1, what is
the relation of CK_PSC and the relation of CK_PSC and

CK_CNT? CK_CNT? 2

‘ Autoreload

In upcounting mode, the counter counts from 0 to the auto-reload value
(content of the TIMx_ARR register), then restarts from 0 and generates a
counter overflow event.

= The following figures show some examples of the counter behavior for

different clock frequencies when TIMx ARR=0x36.
UYL (entrok Vg1
CK_INT
- y re8,8 fen.
CNT_EN _[/Vﬁd 7t 74'6{ 7 /U'

mwsa-acon __JUUUUUUULLIULT (b Tt clk / peRA |
\ Counter register @@m 02 .@. ‘P .
e &% Note : Start with 0, end at

/l, Counter overflow [=== 0x36. What is the relation
/ between CK_INT and
Update event (UEV) 1 Counter overflow ?
g{ Update interrupt flag (UIF) |

Auto-reload register FF 36

Write a new value in TIMx_ARR 30

‘ PWM Output using TIMx

= Pulse width modulation mode allows you to generate a signal with a
frequency determined by the value of the TIMx_ARR register and a duty
cycle determined by the value of the TIMx_CCRX register.

Y}Mlﬂ = The following shows and Edge-aligned PWM waveforms (ARR=8)

¥
w Counterregister]ﬂ 1 m 3 X 4X SX 6 X 7 X 8 X 0 XTX: XMH%
5 5 CoRxes DT | 8 fVI H <

COxIF |

cores 21" S — gmHz

DM% Q/)U{K/ 1§ ittt

31

 Generating PWM in STM32

= You can use CubeMX to Initialize the PWM
= Let's use TIM2 as an example

32

Pinout & Configuration Clock Configuration

CE—T

System Core v

-

DMA
GPIO
IWDG

Analog >

Timers v

Additional Software v Pinout

TIM2 Mode and Configuration ; Using Internal Clock
__ as Clock Source to
Slave Mode ‘Dlsable / v ‘ generate the
» » o PWM in Channel 1
Clock Source ‘lnternal Clock v ‘
Channel1 [PWM Generation CH1 v]
Channel2 |Disable M
Channel3 |stable v ‘

Channel4 IDlsabIe v ‘ TI M2
C ed Channels [Disable /

Configuration

ARK

©® DMA Settings

RTC Period = 63
o
(o ofar s] 0 ©
EaTYT)
~ Counter Settings
TIM4 .
Prescaler (PSC - 16 bits value) 0
TIMS ¥
TIM Counter Period (AutoReload Register - 16 bits val... 63 CC K
TIM7 .
nternal CIOCK UMsIon (CKD) 0 Umision
TIM8 .
auto-reload preload Disable
 Trigger Output (TRGO) Parameters Pulse = 16
. Master/Slave Mode (MSM bit) Disable (Trigger input effect not delayed)
Connectivity 4 Trigger Event Selection Reset (UG bit from TIMx_EGR)
o v PWI i 1
Multimedia ’ Mode PWM mode 1
c i N Pulse (16 bits value)
omputing
= i1
Middleware N CH Polarity High

33

‘ Setup the Period (Frequency)

= You can check the code, initializations for the Period is shown
void MX_TIM2_ Init(void)

htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode =
htim2.Init.Period = 63;
htim2.Init.ClockDivision = TIM CLOCKDIVISION DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL TIM Base Init(&htim2) != HAL OK)

{

TIM COUNTERMODE UP;

Error Handler();
}
sClockSourceConfig.ClockSource = TIM CLOCKSOURCE INTERNAL;

if (HAL TIM ConfigClockSource (&htim3, &sClockSourceConfig) != HAL OK)
{

Error Handler();

‘ Setup the Period (Frequency)

= From the above setting
= If CK_CNT = 72MHz, what is the frequency of Counter overflow ?

CH_GNT JUUNL - JUUUL - JUULL

Counter Register {s2Xs2)X 0 X1 X 2) (oo)Xo X X2) (e Xe X 0 X1 X2)

Counter overflow H o H H

35

Setup the Pulse (Duty Cycle)

= You can check the code, initializations for the Pulse is shown
void MX_TIM2_ Init(void)

if (HAL TIM PWM Init(shtim2) != HAL OK)
{
Error Handler();
}
sMasterConfig.MasterOutputTrigger = TIM TRGO RESET;
sMasterConfig.MasterSlaveMode = TIM MASTERSLAVEMODE DISABLE;
if (HAL TIMEx MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL OK)
{
Error Handler();
}
sConfigOC.0OCMode = TIM OCMODE PWMI;
sConfigOC.Pulse = 16;
sConfigOC.OCPolarity = TIM OCPOLARITY HIGH;
sConfigOC.OCFastMode = TIM OCFAST DISABLE;
if (HAL TIM PWM ConfigChannel (&¢htim2, &sConfigOC, TIM CHANNEL 1) != HAL OK)
{

Error Handler();

36

Setup the Pulse (Duty Cycle)

= The Pulse argument is the number of High count.

Lo X 7 Xe)

Counter Register (XX XmY(®) - (@XEX X XD -~

OCxREF

= What is the duty cycle of OCxREF ?

L
W —
g

37

‘ Enable the PWM

= You configured the Timer in CubeMX, if you want the Timer to run, you
need to add a code on

HAL TIM PWM Start (shtim2, TIM CHANNEL 1);

38

Task 2 — Generating a PWM

You need to output a PWM using TIM3
The specification of PWM is as follows :

Assuming your student ID digits are abcdefgh
o Frequency = zOOkHz = (ghmod 9) + 1

o Duty Cycle = y0% y=(fgmod 7) + 2
;bé (o @ T

Example, if your student ID is 205678@/

o z=(31mod9)+1=5-> Frequency = 500kHz
o y=(83mod7)+2=8-> Duty Cycle = 80%

e
oc\ /\MJ(J,)(t 1 L‘t

‘ Task 2 — Generating a PWM

= You need to take the following note for finishing Task 2.

1.

2.

Please make sure that SYSCLK is 72MHz
The output will be in PA.6 for TIM3_CH1

Pins 8 Alternate functions'®
= | Main
s|18|8|3 8| 3| Pinname || 3| function®
<< |8 Ele|e £ | o (after reset) Default Remap
/~ spit_miso® N
L3|J3 |G5|22|31 |42 PA6 110 PA6 ‘ TIM8_BKIN/ADC12_IN6) TIM1_BKIN
TIM3_CH1®)

Enable PWM for TIM3

40

‘ Task 2 — Viewing the output

You need to connect PA.6 to the DMM, locate the PA.6 from the right
side of the board

Make SURE you use the Connection
Wires provided to lead out the pin
then connect to the DMM Probe.

TELibL
SDIO

DO NOT connect the DMM directly to
the board as it might short circuit to
other pin and hence damage the
board.

;o
-

=4
-
=8
-

-s
)
. -

125/SPI2

41

‘ Task 2 — Viewing the output

Display
Hz for masuring Freq
% for measuring Duty Cycle

| [l AUTOPCWEROFF L]
REGA". " TRUE

Switch
between Hz /| %

Set to
Hz/Duty

-n

g..g'g.g. k. E.
SDIO

i S/SPI2

T
" e
"=t
" -
.'~
]

/

/‘l& AC/DC 600V MAX
C€ [0 CATI

2 A 8
BRRR
SPI1

Y8
“ e

Connect to PA.6
DO NOT CONNECT DMM Cable

DIRECTLY TO THE BOARD
USE the CONNECTION WIRES
PROVIDED to lead out PA.6 PIN

EeeERE
I2C1/2-USARTZ/3

42

 Timer synchronization

= The TIMx timers are linked together internally for timer synchronization
or chaining. When one Timer is configured in Master Mode, it can reset,
start, stop or clock the counter of another Timer configured in Slave

Mode. ow’rn‘f pn padiC ‘fI’)TV/V
TIMA /—/ TIM2
(
Clock MS TS SMS
' A
UEV) Master Slave ||ck psc
RGO1 [ITR1 —
H | mode mode | — H
Prescaler Counter control / contr Prescaler Counter

NN

Input
trigger
selection

U

43

y chen
e

Timer synchronization

From the example above, TIM1 is used to trigger TIM2
To do this, you need to

1.

Configure Timer 1 in master mode so that it outputs a periodic trigger signal on each
update event UEV. A rising edge is output on TRGO1 each time an update event is
generated.

To connect the TRGO1 output of Timer 1 to Timer 2, Timer 2 must be configured in
slave mode using ITRO as internal trigger. You select this through the TS bits in the
TIM2_SMCR register (writing TS=000).

Then you put the slave mode controller in external clock mode 1 (write SMS=111 in the
TIM2_SMCR register). This causes Timer 2 to be clocked by the rising edge of the
periodic Timer 1 trigger signal (which correspond to the timer 1 counter overflow).
Finally both timers must be enabled by setting their respective CEN bits (TIMx_CR1
register).

44

 Timer synchronization

= Below shows the case when TIM1_ARR =31, TIM2 ARR =7

we I QL) = (L JUL =L

Count;le-ll'l\liggister - ---- @ -—— @ -—— g @

TIM1 mpwt
Counter Overflow H @/7' F - H H
0 X 1

TIM2

Counter Register /< > T < ’ X 0 >
Count;—r”\Cll)ierﬂow - H
E
Ao 2T
= If CK_CNT = 72MHz -
o What is the frequency of TIM1 Counter overflow ? S
o What is the frequency of TIM2 Counter overflow ? 2.V
q y / - D2 q l-)/‘(yvvl/lz/

8

45

Task 3 — Generating a PWM

You need to output a PWM using TIM4 using TIM3
as an input

The specification of PWM is as follows :

Assuming your student ID digits are abcdefgh
o Frequency = wkHz = (de mod 9) + 1

o Duty Cycle = x0% =(cdmod 7) + 2) A 5 k{/ D QJ

Example, if your student ID is 20567831
st 7 /

o w=(67mod9)+1=5-> Frequency = 5kHz

o0 Xx=(56mod 7)+2=2-> Duty Cycle = 20%

Task 3 — For TIM3

Q v | 3 TIM3 Mode and Configuration :

System Core o Slave Mode |D|sable v ‘
. Trigger Source ‘Dwab!e v ‘ 0

DMA Clock Source ‘Intemal Clock v ‘

GPIo Ch 11 [PWM G ion CH1

WDG annel ‘ eneration v ‘)

NVIC Channel2 |Disable]
v Channel3 [stable v ‘
v

WWDG Channeld [Disable v]

annels |Disable ‘
prdog >
Timers v Reset Configuration
< Parameter Settings

RTC

TIM1

W als : ®@ 0 (i}

3 ~ Counter Settings

v TIME; Prescaler (PSC - 16 bits value) 0

™G Counter Mode Up

™7 Counter Period (AutoReload Register - 16 bits val... 0

V8 Internal Clock Division (CKD) No Division

| uloreload prelod Disae Enable the Master
v Trigger Output (TRGO) Parameters
c - N Master/Slave Mode (MSM bit) Enable (Trigger delayed for master/slaves simultaneous start) Mode
onnectivity i . -
gger Event Selection Update Event T
. rigger Event to Update
Multimedia ‘ Mode PWM mode 1
Comnat N Pulse (16 bits value) of @
omputing Fast Mode Disable

Middleware N CH Polarity High

\V.
1 /0
/

7/

‘ Task 3 — For TIM4

Pinout & Configuration Clock Configuration Project Mang

Additional Software v Pinout

Q i TIM4 Mode and Configuration

System Core v Stave Mode [Gated Mode Slave MOde : Gated MOde

- Trigger Source [Trigger Source : Refer to Page 49
DMA Clock Source [Disable . i
N - — Clock Source : Disabled
woo e P rvnien Channel 1 : PWM G. CH1
NVIC
v Channel3 |Disable v ‘
WWDG Channel [Disable <]
C ‘Dwaa:\e ‘
Analog N [Use ETR as Clearing Source
Configuration
Timers v
Reset Configuration
RTC rameter Settings
Tt Configure the below parameter:
TIM2
EETH] 0 o o
Prescaler (PSC - 16 bits value) 0
TIME Counter Mode Up
TiM7 Counter Period (AutoReload Register - 16 bits val... 0 Set Su |tab|e Penod
TIM8 L Lol o T
auto-reload preload Disable and Pulse fOI' yOUI’
Slave Mode Controller Gated Mode
Connectivity > ~ Trigger Output (TRGO) Parameters StUdent I D
.) Master/Slave Mode (MSM bit) Disable (Trigger input effect not delayed)
Multimedia > Trigger Event Selection Reset (UG bit from TIMx_EGR)
v it 1
Computing ’ Mode PWM mode 1
: Pulse (16 bits value) 0] &
Middleware > \TERGD DHsa
CH Polarity High

48

‘ Task 3 — For TIM4

= Please note that the CubeMX may use PD.12 as TIM4_CHA1. If it is the
case, please choose PB.6 to be the TIM4 _CH1.
oot PR 5

fine © _Chi

——= Use PB.6

SUEN SYS_TMSSWDIO

o / DO NOT Use PD.12
STM32F103VETxX =

LQFP100

49

‘ Task 3 — Generating a PWM

= You need to take the following note for finishing Task 3.
1. Please make sure that SYSCLK is 72MHz
2. The output will be in PB.6 for TIM4_CH1

|ce|Bs|Bs|s8|o2]13¢] PBs |UO|FT| PB i2c1_SCL®/TMa_CH1®) USARTI_TX

3. Enable PWM for TIM4

50

‘ TIMx Internal trigger connection

= The internal trigger connection by different timers is specified in the in
the TIMx_SMCR Register (Bit 6:4) TS: Trigger selection

MO
Table-86— _TIMX Internal trigger CORNECTioN S—=<——
Slave TIM | \ITR6 (TS =000) | ITR1(TS=001) [GTR2(TS=010) | ITR3 (TS =011)>
TIM2 TIM1 TIM8 TIM3 TIM4
TIM3 TIM1 TIM2 TIM5 TIM4
((AR TIM4 TIM1 TIM2 TIM3 TIM8
\ TIM2 TIM3 TIM4 TIM8

ed to enable which

[TR2. [Ts=010)

= So, in Task 3, Master is TIM3,
ITRx as the internal trigger ?

51

‘ Task 3 — Viewing the output

-

L
-

»e
-

o~
-

e
-

e
-~

e

SDIO

Display
Hz for masuring Freq
% for measuring Duty Cycle

| [l AUTOPCWEROFF L]
REGA". " TRUE

Switch
between Hz /| %

Set to
Hz/Duty

-n

/‘l& AC/DC 600V MAX
C€ [0 CATI

Connect to PB.6
DO NOT CONNECT DMM Cable

DIRECTLY TO THE BOARD
USE the CONNECTION WIRES
PROVIDED to lead out PB.6 PIN

52

Task 4 — Change Optimization

Your C++ Optimization should by default set to Level 3 (-O3) when
generated by CubeMX.

Try to change your Optimization to Level 0 (-O0).
Compile your program check the frequency by using DMM.

Answer the TA if the frequency changed

53

‘ Servo Motor

= One use of the PWM is to control a Servo Motor.

= A servomotor is a rotary actuator or linear actuator that allows for precise
control of angular or linear position, velocity and acceleration. [Wiki]

54

‘ Servo Motor

In this LAB, we will use a SG90 Servo motor.

Q

a

]

1.5 ms pulse will set the motor in middle,
~2 ms pulse will set the motor 45 degrees to the right
~1 ms pulse will set the motor 45 degrees to the left

PWM=0range (I1I"N) 4
Vcc=Red (+) —
Ground=Brown (=) —

1-2ms
Duty Cycle
4.8V (~5V) |
Power

and Signal

20 ms (50 Hz)
PWM Period

55

‘ Task 5 — Control a Servo Motor

= Connect the Signal pin (ORANGE) of the Servo to the PB.6

DO NOT CONNECT the Servo
DIRECTLY TO THE BOARD
USE the CONNECTION WIRES
PROVIDED to lead out GND PIN

BROWN Connect to GND

-

I2C1/2-USART2/:

SELERE

ORANGE Connect to PB.6

56

Task 5 — Control a Servo Motor

Combining with your knowledge of LAB2, write a
program to perform the following task.

At start, servo will stay at the middle

If K1 is pressed, servo turns to one side by 30 degrees from the middle,
when K1 is released it will stay at that position

If K2 is pressed, servo turns to the opposite side by 30 degrees from the middle
when K2 is released it will stay at that position

If both K1 AND K2 are pressed together, servo will stay at the middle.
when both K1 and K2 are released it will still stay at middle

57

Task 5 — Hint

Per your previous tasks, you might use CubeMX to generate
your PWM code, once PWM changed, you might think to
regenerate the code again.

However, like Task 5, you need to alter the PWM Pulse
(Duty Cycle) dynamically. You can refer to the following link
to see how we can write our own function to achieve that.

You can also think how you can alter the PWM Period
(Frequency) by referring to the generated code.

https://www.waveshare.com/wiki/STM32CubeMX_Tutorial_Series: PWM

58

END

