

The Hong Kong University of Science and Technology Department of Electronic and Computer Engineering

ELEC2400	ELECTRONIC (CIRCUITS	FALL 2021-22
			t Number :
	LAB 1(b) – Instrumentation	on and Measureme	nt
	Answer S	Sheet	
Q7. Show only the tri	angle wave on the scope, and ca	upture it.	
Q8. What is the freque	ency of the triangle wave measur	re in the scope?	Frequency =Hz
Q9. Capture the resul	tant waveform of A-B.		
Q10. What is the freq	uency of the resultant waveform	? Frequency =	Hz

Q11. What is V _{DMM} (square)?	V rms
Q12. What is V _{DMM} (triangular)?	V rms
Q13. What is V _{DMM} (sine)?	V rms
Q14. What is V (square)?	V rms
Q15. What is V (triangular)?	V rms
Q16. What is $V(sine)$?	V rms
Q17. What is V _A (DMM)?	V
Q18. What is V _B (DMM)?	V
Q19. What is V _A (x1)?V	
Q20. What is $V_B(x1)$?	7
Q21. What is V _A (x10)?	V
Q22. What is V _B (x10)?	V
Q23. Explain briefly the results in Step 2, 3,	and 4.

Q24. Sketch the V_{DMM} versus frequency results obtained in step 2 and 3. Use log scale for the frequency. (You could use drawing tools in Microsoft Word to complete the plot, or you could use other software to plot the curve, like Excel, and insert the drawing below.)

Q25.	What is the estimated bandwidth of the DMM from the plot?	Hz

Q26.	Show all the circuits and waveform to TA.	YES / NO
------	---	----------