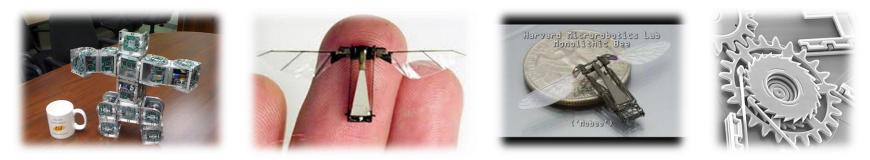

## ELEC1100: Introduction to Electro-Robot Design

#### Lecture 2: Basic Electronic Components

SONG Shenghui and MURCH Ross, Dept. of ECE, HKUST

#### ELEC1100 ROADMAP

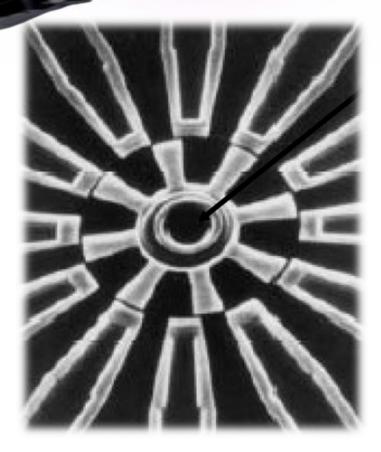



Wk1: Basic Electronics -Charge/Current/Voltage/Resistor

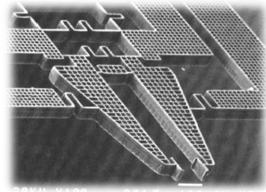


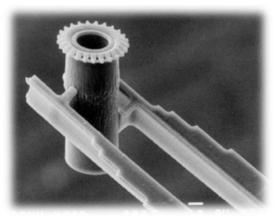


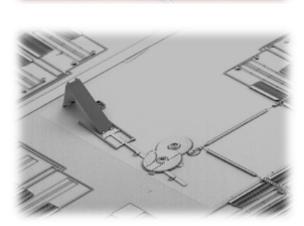
#### **ECE AND ROBOTICS**


- Different areas of ECE relevant to Robotics
  - Nanoelectronics fundamental hardware
  - Micro-electro-mechanical systems (MEMS) micro-robots, sensors
  - Integrated-Circuit and Systems control system
  - Photonics sensors
  - Multimedia and signal processing information processing
  - System and Automation control system
  - Wireless communication and networking robot communications
  - Computer Engineering decision making







Department of Electronic and Computer Engineering, The Hong Kong University of Science & Technology


#### MICRO ROBOT EXAMPLES



**Electrostatic Micro Motor** 







ConspiratorialPlanet.com

Gear and dust mite

#### Micro Tweezers

#### **Micro Manipulator**



Department of Electronic and Computer Engineering, The Hong Kong University of Science & Technology

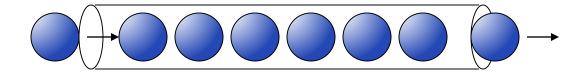
### **BASIC ELECTRICAL QUANTITIES**

#### Atom structure

- fundamental element of matter
- consists of protons, neutrons, and electrons
- +ve charge (proton)
- -ve charge (electron)



Opposite charges attract, like charges repel



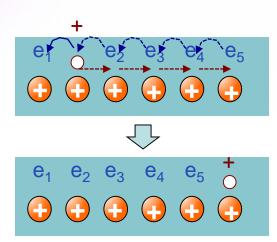

- > An atom is electrically neutral: same number of protons and electrons
- > Smallest amount of charge: q (charge for 1 electron)  $-q = -1.6 \times 10^{-19} \text{C}$
- Electrons at the farthest orbit can be added and removed from the orbit easier than that in other orbits



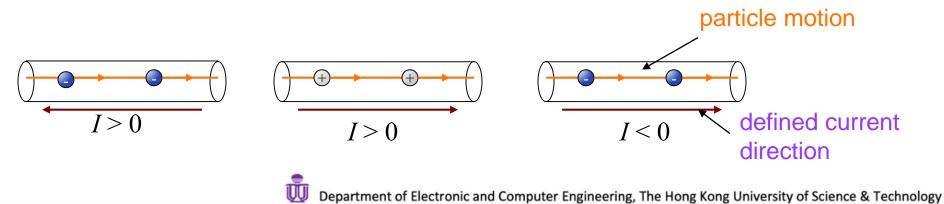
### **CONDUCTORS AND INSULATORS**

- Some atoms require less energy to remove the outer electrons for conduction – Conductors
  - > Materials through which charge flows readily: low resistance
- Some atoms are difficult to lose electrons Insulators
  - > Materials that do not allow charge to move easily: high resistance
- Charges flow through a conductor:









- Current is the orderly movement of charged particles and is equal to the rate of flow of charges
- Symbol: *I*
- Unit: ampere (A)
- 1 ampere = transfer of one coulomb in one second (1C/s)
- Direction of current flow:
  - Electron is negative charge by definition
  - > So positive current flow (i.e. l > 0) is opposing the flow of electrons



# **EXPLANATION OF CURRENT FLOW**



- The current generated by a negative charge moving to the left is equivalent to the current generated by a positive charge moving to the right.
- Current convention



#### QUIZ [1]: CURRENT FLOW

For the following diagrams, select all with current flowing in the positive direction according to the red arrow



### **CURRENT AND CHARGE**

Current is the rate of flow of charge

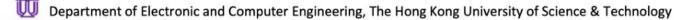
- > Average current is given by  $I = \frac{\Delta q}{\Delta t}$
- Examples
  - Q1: An electric heater operated from a dc source that provides 8.2x10<sup>21</sup> electrons in 10 seconds. How much current in amperes (A) is flowing through the heater?
  - Some numbers you need to know:
    - one electron contain 1.6x10<sup>-19</sup>C of charge
    - 1 amperes is also equal to 1C/s



# **CURRENT AND CHARGE: EXERCISE [1]**

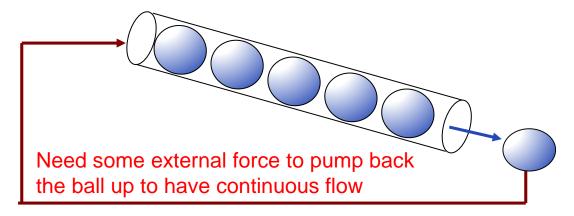
- Current is the rate of flow of charge
  - > Average current is given by  $I = \frac{\Delta q}{\Delta t}$
- Examples
  - Q1: An electric heater operated from a dc source that provides 8.2x10<sup>21</sup> electrons in 10 seconds. How much current in amperes (A) is flowing through the heater?
  - > Answer:

$$I = \frac{\Delta q}{\Delta t} = \frac{1.6 \times 10^{-19} C \times 8.2 \times 10^{21}}{10s} = 131.2A$$




## **CURRENT AND CHARGE: EXERCISE [2]**

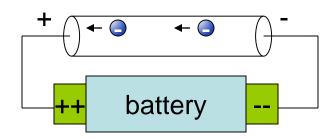
- Current is the rate of flow of charge
  - > Average current is given by  $I = \frac{\Delta q}{\Delta t}$
- Examples
  - Q2: If a battery delivers a current of 50A when the car is started, and the starting time is 4 seconds, how many electrons flow out of the battery?


> Answer:

$$I = \frac{\Delta q}{\Delta t} \Rightarrow 50A = \frac{1.6 \times 10^{-19} C \times n}{4s} \Rightarrow n = \frac{50A \times 4s}{1.6 \times 10^{-19} C} = 1.25 \times 10^{21}$$



### VOLTAGE [1]

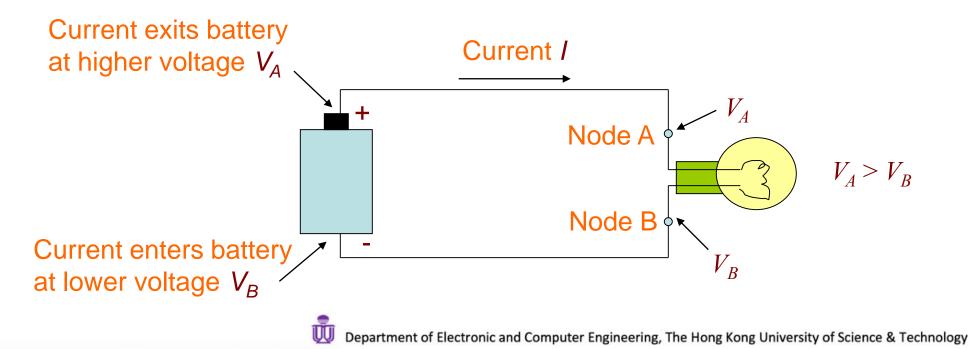

- In order to have current flow between two points, we need to have a "voltage difference" between these two points
- ✤ Analogy to water flow or ball flow inside a tube
  - In order to have the balls flow, the tube needs to be tilted and the gravitational force will make the balls flow
  - The gravitational potential energy depends on the difference in the height of the two ends of the tube





#### **VOLTAGE** [2]

- To have current flow between two points, we need to have a connection (wire) and a voltage difference between them
- The two points have different polarity and hence have potential difference
  - We need some external source to move back the +ve charge from the -ve terminal to +ve terminal or -ve charge from the +ve terminal to -ve terminal in order to have continuous current flow
  - Example: a battery uses chemical energy to move the electrons




The voltage difference that a battery generates between its +ve and -ve terminals is a function of its internal chemistry, e.g., voltage of an AAA battery is about 1.5 Volt



### VOLTAGE [3]

- Symbol: V;
- ✤ Unit: volt or V
- Voltage source example: a battery
- ✤ Node voltage: the potential difference between two nodes of a circuit.



# **RESISTANCE** [1]

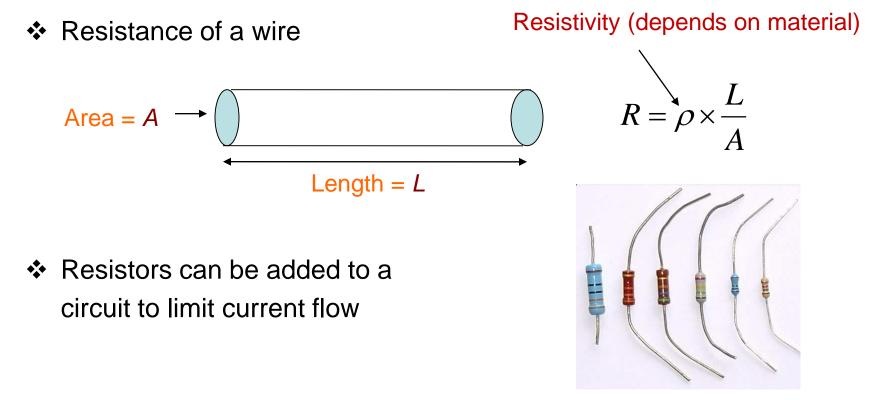
- Resistance is the ability of a conducting material to resist the flow of charge (or current)
- For the same voltage difference between two points
  - ➤ Large resistance → small current
  - ➤ Small resistance → large current
- ✤ Ideal wire → ideal conductor → no resistance
- ✤ Ideal insulator → infinite resistance
- ✤ Real components → finite amount of resistance



# **RESISTANCE** [2]

#### Effect of resistance



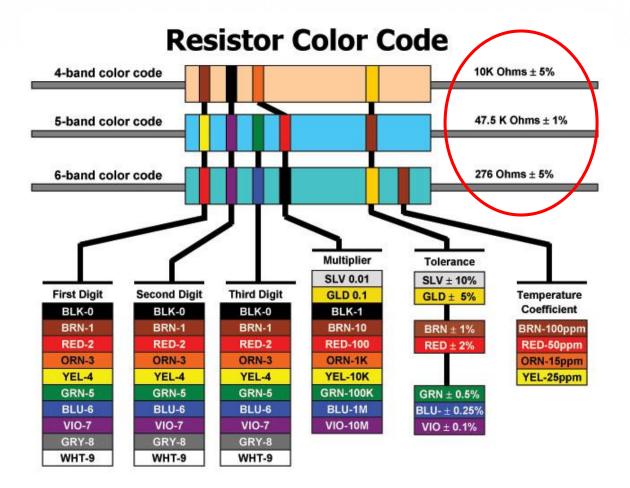



- Resistance can be added to avoid large current
- ✤ All loads (e.g. light bulbs, motors) and even wires have resistance



## **RESISTANCE** [3]

- Symbol: R;
- Unit: ohm or Ω






#### **RESISTANCE** [4]

#### Color code for resistor values







#### METRIC PREFIX

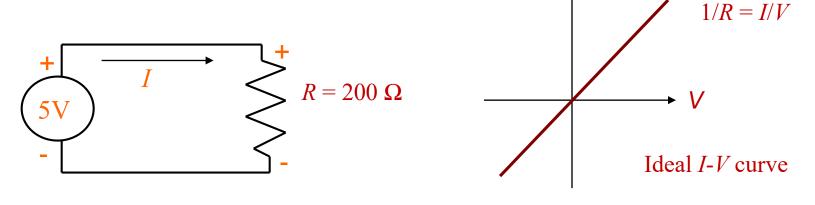
Can be used for volt, ampere and ohm

|                      | $atto = a = 10^{-18}$        |
|----------------------|------------------------------|
| $peta = P = 10^{15}$ | $femto = f = 10^{-15}$       |
| tera = $T = 10^{12}$ | $pico = p = 10^{-12}$        |
| $giga = G = 10^9$    | nano = n = 10 <sup>-9</sup>  |
| $mega = M = 10^{6}$  | micro = $\mu = 10^{-6}$      |
| kilo = k = $10^3$    | milli = m = 10 <sup>-3</sup> |

• e.g. 10 MΩ = 10000000 Ω; 5 mA = 0.005 A



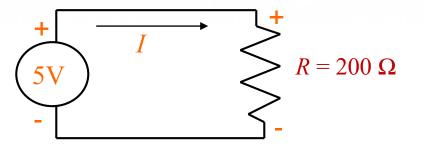
#### OHM'S LAW AND I-V CURVE


Ohm's Law: current as a function of voltage

$$V_A \stackrel{\bullet}{\longrightarrow} V_B \qquad V = V_A - V_B$$

✤ Question: given V, what is I?

$$V = I \times R$$
 or  $I = \frac{V}{R}$ 


✤ I-V curve





# QUIZ [2]: OHM'S LAW

For the following circuit, calculate the current





#### CAPACITOR

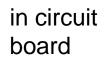
✤ A capacitor is a charge storage element



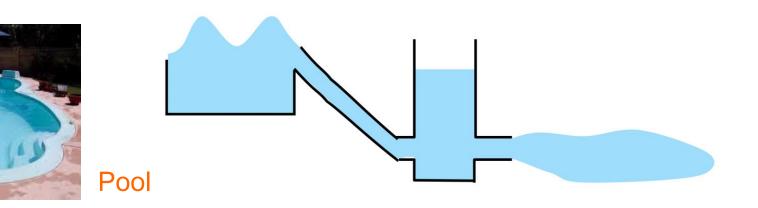








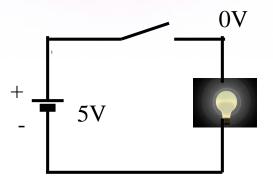

symbol

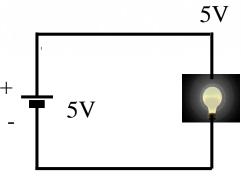

polyester film capacitor

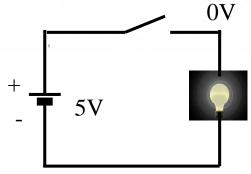
ceramic capacitor

electrolytic capacitor




✤ Analogy



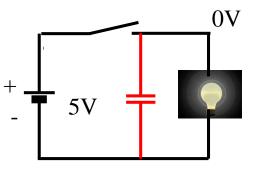




# **CAPACITOR ACTIONS**

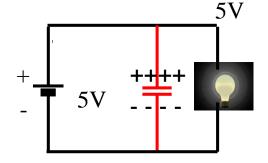
Without capacitor



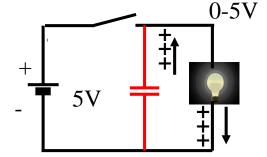





Switch is off; lamp is off


Switch is on; lamp is on

Switch is off; lamp is off


With capacitor



Lamp is off; capacitor is electrically neutral

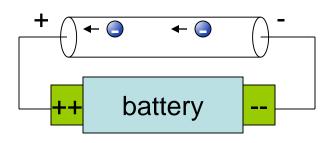


Lamp is on; capacitor is charged

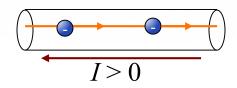


Lamp keeps on for a while; capacitor is discharged

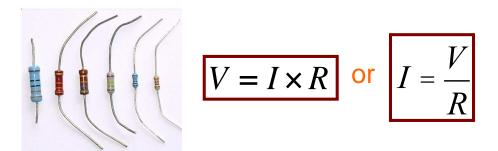



Department of Electronic and Computer Engineering, The Hong Kong University of Science & Technology

# LECTURE SUMMARY


Source of charges




Voltage source



Charge motion and current



Resistor and Ohm's law



New element learned

Capacitor: stabilize system





Department of Electronic and Computer Engineering, The Hong Kong University of Science & Technology

# NEXT LECTURE

- Concept of power and energy
- Power delivery system



# **QUESTIONS?**

TER

